ISSN 0973-1555 © Ruchika Kataria and Dolly Kumar

On the Aphid-ant association and its relationship with various host plants in the Agroecosystems of Vadodara, Gujarat, India

Ruchika Kataria and Dolly Kumar*

Division of Entomology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara- 390002, India

(e-mail: *dollymsu@gmail.com)

Abstract

Aphid-ant association and its relationship with various host plants is age old and in most of the cases remains unreported. The present research deals with the extent of damage caused by aphids, a major pest of economically important crops. It also focuses on the role of ants in spreading this pest from one crop to another in the agroecosytems of Vadodara. Hence the objectives of the present study were: to identify the aphid species infesting various agricultural crops with an aim to control them; and to identify ants and host plants associated with the aphid species. Three species of aphids, *Aphis crassivora, A. gossypii* and *A. nerii* were collected from the fields and later identified. Ants associated with aphids were *Camponotus compressus, Monomorium minimum, Pheidole* sp. and *Solenopsis* sp. The ant *Camponotus* sp. usually acts as one of the main cause of spread of aphids from one plant to another. Aphid-ant association was seen in 30 economically important crops maximally from the families Malvaceae, Fabaceae, Solanaceae and Brassicaceae. Ant-aphid association if disrupted can control the population of aphids in the agricultural fields. Therefore, the management of ants can be added as a key component in management of serious pests like aphids.

Keywords: Aphid-ant association, agroecosystems.

Introduction

Aphids (Homoptera: Aphidoidea) and ants (Hymenoptera: Formicidae) are the protagonists of one of the most studied model of mutualistic relationships in the animal kingdom (Detrain *et al.*, 2010). This aphidant association has strong interaction with various host plants. Aphids are one of the major pests of the economically important crops of Vadodara like cotton, castor, pigeon pea, cow pea, etc. Razaq *et al.* (2011) reported 10-90% yield loss in India to the economically important crops depending upon severity of damage and crop stage by aphids. It is a well-known fact that an ant colony tends simultaneously several aphid species, thus there can be intra or interspecific competition between aphid groups for the services of ants. Aphids produce a carbohydrate and nitrogen rich excretion called as honeydew, which is collected by ant species; in return provide protection and hygiene to aphids. This in popular terms is known as mutual interaction.

In India, few cases on aphid-ant association have been reported, but none from Vadodara agricultural fields. Keeping this in mind, the present study was conducted on aphid-ant association and its relationship with various host plants in and around agricultural fields of Vadodara. The main objectives of the work were to: 1) identify the aphid species infesting various agricultural crops with an aim to control them. 2) identify ants and host plants associated with aphid species.

Materials and Methods

Study was conducted from September 2008 to May 2011. Survey sites were chosen on the basis of accessibility and location within an eco-region. Vadodara District is located in the eastern part of the state of Gujarat in western India at 22°17'59''N, 73°15'18''E, 35 m above the sea level. Aphid infestation was studied in agricultural fields of Vadodara, located within 80 kms of Vadodara city. All fields were approximately 2-5 ha in size. The main crops cultivated are Cotton, Castor, Sugar cane, Pigeon pea, Chickpea, Ladies finger, Potato, Brinjal, Radish, Cauliflower, Wheat, Paddy and Maize.

Collection of female aphids was done by hand collection from aphid infested plants. For collection of ants pitfall and hand collection methods were used, collected specimens were preserved in 70% alcohol for laboratory identification. A stereomicroscope, Leica MPS 60 Ø28/8x/MPS was used for identification and photographic record. Photography was done using a Canon digital camera (Power Shot ISI-120, 12x optical Aphids were identified using zoom). Blackman and Elastop (2000) and later confirmed in the Entomology Division of the Anand Agricultural University Anand. Ants were identified using the keys provided by Bolton (1994). The identification of host plant species were done by Department of Botany, The Maharaja Sayajirao University of Baroda.

Assessment of incidence and infestation rate of aphids

The assessment of infestation by insect pests on various crops was done as per the "1-4 Scale infestation" scale (Nagrare *et al.*, 2011).

- a) 1 Grade: Scattered appearance of few aphids on the plant.
- b) 2 Grade: Severe infestation of aphids on any one branch of the plant.
- c) 3 Grade: Severe infestation of aphids on more than one branch or half portion of the plant.
- d) 4 Grade: Severe infestation of aphids on the whole plant.

Results and discussion

The incidence of aphid population on various host plants was observed from September 2008 to May 2011. Infestation of aphids start appearing in the month of September. As the crop grows, population of the aphids on the crop also increases. Maximum population of aphids was observed in the months of November to January which gradually starts decreasing in the months of February and March. Aphid population disappears totally in the month of April to reappear again in September. This was the observation for all the three consecutive years in agricultural fields of Vadodara. Karim et al. (2001) also reported that the aphid population started growing from August, became highest in January and almost vanished in April.

Our results clearly show that aphids are polyphagous and cause severe damage to many host plants (Table 1). In Vadodara, 30 host plant species were recorded from 17 different families. Takalloozadeh (2010) from Iran also reported Aphis gossypii attacking more than 70 different host plants. Major hosts of the aphids in agriculture fields of Vadodara are Gossypium arboreum, Vigna unguiculata. Solanum tuberosum and Solanum melongena. Whereas ornamental plants such as: Hibiscus mutabilis. Hibiscus rosa-sinensis. Nerium indicum. Chrysanthemum sp. and certain weeds like Calotropis procera worked as alternative host of aphids. Plant species belonging to family Malvaceae (17%), Fabaceae (16%), Solanaceae (12%) and Asclepiadaceae (10%) were found as preferred host plants of aphids in Vadodara (Fig. 1).

Aphid-ant interaction is commonly seen on various host plants; about 30 host plants and 6 species of aphids namely Aphis brassicae, A. crassivora, A. fabae, A. gossypii, A. nerii, Myzus persicae were recorded from Vadodara agricultural sites (Table 2). Most abundant species considered as major pests in Vadodara include Aphis gossypii; Aphis crassivora and Aphis nerii. Ants commonly associated with aphids involve Camponotus compressus, Pheidole sp., Monomorium sp. and Solenopsis sp.

A. brassicae was mostly seen on the Brassicaceae family (cabbage and cauliflower) with Pheidole ants associated with them. A. crassivora was mainly found on the family Fabaceae, Malvaceae and Lamiaceae with ants Camponotus compressus and Monomorium minimum associated with them. Along with these ants; the family Lamiaceae also had association with ant Lasius niger which is rarely seen in other host plants. A. fabae mostly seen on the family Solanaceae, Asteraceae, Fabaceae, Amaranthaceae and Papaveraceae in association with ants Camponotus 1 1/ 25 6.1

Stitung I III M III I III III III III

toda ta - adamiah na - -


compressus and Monomorium sp. But in Solanaceae and Papaveraceae, ants Pheidole sp. and Solenopsis sp. were also seen.

In Vadodara agricultural fields, A. gossvpii is one of the major threats to Cotton. A. gossypii was mainly found on Malavaceae, Solanaceae and Asteraceae family having interaction with Camponotus strong compressus, Monomorium sp. and Pheidole sp. Patel et al. (2011) reported that 1326 insect species damage Cotton (Gossypium spp.) in approx. 100 countries, of which 16 species are of major concern causing an annual loss of 50-60% of the total production in Northern Gujarat. The ratio of ants and aphids per plant on cotton crops was found to be 1:30. Whereas A. nerii was also associated with the Camponotus compressus on Nerium and Calotropis plants; ant Monomorium sp. was found on the family Asteraceae and Amarantheceae and the Solenopsis sp. was on the family Rutaceae and Poaceae. Myzus persicae mainly seen on the family Malvaceae, Brassicaceae, Amarantheceae and Solanaceae and the associated ants are Camponotus compressus and Monomorium sp. In spinach and brinjal, aphid association was seen with Solenopsis sp. and Pheidole sp.

The species of ants such as Camponotus compressus, Pheidole sp. and Monomorium sp. was seen on aphids on different crops but Camponotus compressus being the major one. Thus, the aphid association is commonly seen with Camponotus compressus and Monomorium sp. The host plants were varying but the aphid-ant association remains the same. Maximum aphid – ant association was found on cotton crop along with beans and pigeon pea. But less association of aphid-ant interaction were seen on Brassicaeae and Utriaceae

A mutual interaction was observed between aphids and ants. Aphids produce honeydew excretion which is a food for ants and ants gives protection to aphids. In Ankara Plant Protection Central Research Institute of Turkey, Ozdemir et al. (2008) reported 16 different species of ants associated with 19 aphid species. The most encountered ant species associated with many aphid species were Camponotus aethiops, Camponotus piceus, Formica glauca, Lasius paralienus and Crematogaster ordidula. In Vadodara district, Pheidole sp. and Camponotus compressus were observed tending aphid colonies on many plants. Vinson and

Scarborough (1989) also found out the presence of few red imported fire ants, Solenopsis invicta workers on aphid bearing cotton plants reduced aphid predators effectiveness in laboratory. Camponotus compressus was generally found on almost all the host plants, generally acting as a carrier could most possibly be one of the reasons of aphid dispersion from one plant to other host plant in Vadodara. Hence the present study persuades us to study more about these associated relationships and for understanding of the patterns and processes associated with aphid-ant relationships.

Fig. 1: Percentage infestation of different host plants by aphids.

Host category	Botanical Name	Common Name	Family	Infestation Scale
	Gossypium hirsutum (L.)	Cotton	Malvaceae	4 Grade
Field crops	Ricinus communis (L.)	Castor	Euphorbiaceae	1 Grade
	Cajanus cajan (L. Millsp.)	Pigeon pea	Fabaceae	4 Grade
	Vigna unguiculata (L.)	Cow pea	Fabaceae	4 Grade
	Zea mays (L.)	Maize	Poaceae	2 Grade
	Triticum aestivum (L.)	Wheat	Gramineae	2 Grade
Vegetables	Solanum melongea (L.)	Brinjal	Solanaceae	3 Grade
	Solanum tuberosum (L.)	Potato	Solanaceae	3 Grade
	Lycopersicon esculentum (L.)	Tomato	Solanaceae	4 Grade
	Abelmaschus esculentus (L.)	Lady's finger	Malvaceae	4 Grade
	Brassica oleracea (Linn)	Cabbage	Brassicaceae	2 Grade
	Beta vulgaris (L.)	Beet	Papaveraceae	0 Grade
	Cucumis sativus (L.)	Cucumber	Cucurbitaceae	2 Grade
	Spinacia oleracea (L.)	Spinach	Amarathaceae	2 Grade
	Raphanus sativus(L.)	Radish	Brassicaceae	2 Grade
	Nerium indicum (Mill.)	Oleander	Apocynaceae	2 Grade
Ornamental crops/	Tagetes erecta (L.)	Marigold	Asteraceae	1 Grade
Fruit trees/trees and	Hibiscus mutubilis (L.)	Cotton rose-mallow	Malvaceae	3 Grade
shrubs	Hibiscus rosa-sinensis (L.)	China rose	Malvaceae	4 Grade
	Ocimum sanctum (L.)	Tulsi	Lamiaceae	1 Grade
	Helianthus annuus (L.)	Tulsi	Asteraceae	1 Grade
	Papaver somniferum (L.)	Opium poppy	Amaranthaceae	0 Grade
	Rosa indica (L.)	Rose	Rosaceae	1 Grade
	Atriplex rosea (L.)	Red orach	Asteraceae	0 Grade
	Matricaria recutita (L.)	Chamomile	Asteraceae	0 Grade
	Nerium oleander (L.)	Oleander	Apocynaceae	4 Grade
	Vinca rosea (L.)	Periwinkle	Apocynaceae	1 Grade
	Citrus limonium (L.)	Lemon	Rutaceae	2 Grade
	Chrysanthemum sp. (L.)	Chrysanths	Asteraceae	3 Grade
	Urtica dioica (L.)	Stinging nettle	Urticaceae	0 Grade
	Datura metel (L.)	Angel's trumpet	Solanaceae	0 Grade
Weeds	Chenopodium album (L.)	Pigweed	Asteraceae	1 Grade
	Cirsium arvense (L. Scop)	Canada thistle	Asteraceae	1 Grade
	Calotropis procera (W.T.Aiton)	Apple of sodom	Asclepiadaceae	4 Grade
	Gomphocarpus sp. (E.mey.)	Cotton bushes, Balloon bushes	Asclepiadaceae	2 Grade
	Asclepias (E.mey.)	Butterfly weed	Asclepiadaceae	2 Grade

Table 1: Host plants of Aphids with its infestation level in agrosystem of Vadodara.

APHIDS	FAMILY	HOST PLANTS	ANTS
Aphis brassicae	Brassicaceae	Brassica oleracea (Linn)	Pheidole sp.
(Linnaeus, 1758)		(Cabbage)	
Aphis crassivora		Leguminous crops	
(Koch, 1854)	Fabaceae	Cajanus cajan (L. Millsp.)	Camponotus compressus
		(Pigeon pea)	·····
	Fabaceae	Vigna unguiculata (L.)	Camponotus compressus
		(Cow pea/ Beans)	Monomorium minimum
	Malvaceae	Hibiscus rosasinesis (L.)	Camponotus compressus
		(China rose)	Monomorium minimum
	Lamiaceae	Ocimum sanctum (L.)	Monomorium minimum
		(Tulsi)	Lasius niger
			Camponotus compressus
Aphis fabae	Fabaceae	Vigna unguiculata (L.)	Camponotus compressus
(Scopoli,1763)	Solanaceae	(Cow pea/Beans) Solanum tuberosum (L.)	Monomorium sp. Camponotus compressus
	Solunaceae	(Potato)	Pheidole sp.
	Asteraceae	Helianthus annuus (L.)	Monomorium minimum
	Alster uccue	(Sun flower)	
	Solanaceae	Solanum lycopersicum (L.)	Monomorium sp.
		(Tomato)	
	Papaveraceae	Beta vulgaris (L.)	Monomorium sp.
	-	(Beet)	
	Amaranthaceae	Papaver somniferum (L.)	Solenopsis sp.
	-	(Opium Poppy)	Monomorium sp.
	Asteraceae	Chenopodium album (L.)	Monomorium minimum
		(Lamb's quarters/Pigweed)	
		Atriplex rosea (L.)	
	Asteraceae	(Red orach)	
		<i>Matricaria recutita</i> (L.) (Chamomile)	
		Cirsium arvense (L.Scop)	
		(Canada thistle)	
Aphis nerii (Boyer de	Apocynaceae	Nerium oleander (L.)	Camponotus compressus
Fonscolombe, 1841)		(Oleander)	
	Apocynaceae	Vinca sp. (L.)	Monomorium minimum
		(Periwinkle)	
	Poaceae	Zea mays (L.)	Solenopsis sp.
		(Maize)	
	Gramineae	Triticum aestivum (L.)	Solenopsis sp.
		(Wheat)	Monomorium sp.
			Camponotus compressus
	Rutaceae	<i>Citrus limonium</i> (L.) Burm.f.	Solenopsis sp.
		(Lemon) Calotrophis sp.(R.Br.)	
	Asclepiadaceae	(Milkweed)	Camponotus compressus
	Asciepiuuuceue	Gomphocarpus sp. (E.mey.)	Camponotas compressas
	Asclepiadaceae	(Cotton bushes, Balloon bushes)	Camponotus compressus
	Asclepiadaceae	Asclepias (E.mey.)	Camponotus compressus
		(Butterfly weed)	
L		1.3	· · · · · · · · · · · · · · · · · · ·

Aphis gossypii (Glover, 1877)	Malvaceae	Gossypium sp. (L.) (Cotton)	Camponotus compressus
	Solanaceae	Solanum melongena (L.)	Camponotus compressus
		(Brinjal)	Pheidole sp.
	Cucurbitaceae	Cucumis sativus (L.) (Cucumber)	Camponotus compressus
	Malvaceae	Hibiscus rosa sinensis (L.)	Monomorium minimum
		(China rose)	Camponotus compressus
	Asteraceae	Chrysanthemum sp. (L.)	Monomorium minimum
		(Chrysanths)	Camponotus compressus
	Urticaceae	Urtica dioica.(L.) (Stinging nettle)	Solenopsis sp.
Myzuspercicae (Sulzer, 1758)	Malvaceae	Gossypium sp. (L.) (Cotton)	Camponotus compressus Solenopsis sp.
	Amaranthaceae	Spinacia oleracea (L.)	Monomorium sp.
		(Spinach)	Camponotus sp.
			Pheidole sp.
	Brassicaceae	Brassica oleracea (Linn) (Cabbage)	Monomorium sp.
	Brassicaceae	Raphanus sativus (L.) (Radish)	Camponotus compressus
	Solanaceae	Solanum melongena (L.)	Pheidole sp.

Table 2: continued

References

- Blackman, R.L. and Eastop, V.F. 2000. Aphids on the World's Crops: An Identification Information Guide. 2nd Edition. Chichester: John Wiley. 466pp.
- Bolton, B. 1994. Identification Guide to the Ant Genera of the World. London: Harvard University Press. 222pp.
- Karim, K.N.S., Das, B.C and Khalequzzaman, M.
 2001. Population Dynamics of Aphis gossypii Glover (Homoptera: Aphididae) at Rajshahi, Bangladesh. Journal of Biological Sciences 1(6): 492-495.
- Ozdemir, I., Aktaç, N., Toros, S., Kılınçer, N. and Gürkan, M.O. 2008. Investigations of the associations between aphids and ants on wild plants in Ankara province (Turkey). Munis Entomology and Zoology 2(3): 606-612.

- Patel, I.S., Patel, G.M., Patel, V.J. and Chaudhary, F.K. 2011. Evaluation of biocontrol based IPM module on cotton Hybrid 10.Journal of Biopesticides 4(1): 73-74.
- Razaq, M., Mehmood, A., Aslam, M., Ismail,M., Afzal, M., Alishad, S. 2011. Losses in yield and yield components caused by aphids to late sown Brassica napus, Brassica juncea and Brassica carrinata braun at multan, Punjab (pakistan). Pakistan Journal of Botany 43(1): 319-324.
- Takalloozadeh, H.M. 2010. Effects of host plants and various temperatures on population growth parameters of Aphis gossypii Glover (Hom: Aphididae). Middle East Journal of Scientific Research 6(1): 25-30.

Vinson, S.B. and Scarborough, T.A. 1989. Impact of the imported fire ant on laboratory Population of Cotton aphid (Aphis gossypii) predators. The Florida Entomologist 72(1): 107-111.